- 1. A net torque of 26.0 [Nm] acts on a wheel and causes an angular acceleration 21.0 [rad/s²], what is the wheel's rotational inertia?
- 2. A centrifuge rotor rotating at 10 [rad/s] is shut off and is eventually brought uniformly to rest (i.e., constant deceleration) by a frictional torque of 0.90 [Nm]. The mass of the rotor is 5 [kg] and it can be approximated as a solid cylinder of radius 1.2 [m] ($I = 1/2mr^2$),
 - a. What is the rotational inertia of the rotor?
 - b. What is the angular acceleration of the rotor while the frictional torque is acting on the rotor?
 - c. Through how many radians will the rotor turn before coming to rest?
 - b. How long will it take to bring the rotor to rest?
- 3. The gravitational potential energy function of an object on planet Surium is U(x) = 191/(2 + x) [J]. What force is acting on the object when it is 3 [m] above the surface of planet Surium?
- 4. The velocity of an object as a function of time is given by $v(t) = 4t^3$ [m/s].
 - a. Derive an expression for the object's position vs. time equation including the constant of integration.
 - b. Find the constant of integration if x(0) = 0.
 - c. What is the change in position of the object from time 2 [s] to 7 [s]?

AP FROs

- 5. 1999 #3 a and b only (Disk-Block-Rod System)
- 6. 2008 #1 (Writing/solving differential equations)

Extra Problems:

E1. An electrical motor provides 0.50 [W] of mechanical power. How much time will it take the motor to lift a 0.1 [kg] mass at constant speed from the floor to a shelf 2.0 [m] above the floor?

Equation: P = Work/time[J]/[s] = [W]

HW Set 4 Answers

- 1. 1.23 [kg·m²]
- 2a. $3.6 [kg m^2]$
- 2b. -0.25 [rad/s²]
- 2c. 200 [rad]
- 2d. 40 [s]
- 3. 7.64 [N]
- 4a. $x(t) = t^4 + C$
- 4b. C = 0
- 4c. 2385 [m]
- 5-9. Will review in class

Extra Problem(s)

E1. t = 3.92 [s]